视频解析图片识别人脸采集并切图video-clip-images,face-api.js
video-clip-images采集视频中的人脸并截取
[*]本Demo是通过face-api实现的。具体内容可前往Github:face-api
[*]注: 返回大部分使用的都是base64
[*]Demo地址放在了码云上:video-clip-images
目录结构
video-clip-images/
├── face-api.js-master/
│ ├── weights/ 模型
│ │ └── ...
├── js/ 脚本
│ └── ...
└── index.html第一步加载模型
await faceapi.nets.tinyFaceDetector.loadFromUri(
"./face-api.js-master/weights"
);第二步 通过传入的url 获取每一秒的图片
async getVideoFace(url) {
const video = document.createElement("video");
const canvas = document.createElement("canvas");
video.src = url;
await new Promise((resolve) => {
video.addEventListener("loadedmetadata", () => {
resolve();
});
});
const duration = video.duration;
const ctx = canvas.getContext("2d");
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
const frameData = [];
for (let i = 0; i < duration; i++) {
video.currentTime = i;
await new Promise((resolve) => {
video.addEventListener("seeked", function handler() {
video.removeEventListener("seeked", handler);
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
const base64 = canvas.toDataURL("image/jpeg");
frameData.push({
base64,
second: i,
});
resolve();
});
});
}
return frameData;
}第三步 处理每一秒的图片并裁剪
[*]detectFrame获取人物在图中的位置
[*]getClipImage获取裁剪后的图片getClipImage(box, image) {
const newCanvas = document.createElement("canvas");
const newCtx = newCanvas.getContext("2d");
newCanvas.width = box.width;
newCanvas.height = box.height;
newCtx.drawImage(
image,
box.x,
box.y,
box.width,
box.height,
0,
0,
box.width,
box.height
);
const base64Data = newCanvas.toDataURL("image/png");
let img = document.createElement("img");
img.src = base64Data;
return base64Data;
}
[*]通过第二步获取的data使用detectFrame获取box
[*]通过filter过滤box为空也就是没有获取到人脸。
[*]最后使用getClipImage获取到裁剪后的图片
async install(url) {
let data = await this.getVideoFace(url);
const detectFrame = async (img) => {
let box;
const detections = await faceapi.detectAllFaces(
img,
new faceapi.TinyFaceDetectorOptions()
);
detections.forEach((detection) => {
box = detection.box;
});
return box;
};
data = data.map((item) => {
return new Promise((resolve, reject) => {
let img = new Image();
img.onload = async () => {
item.box = await detectFrame(img);
item.img = img;
resolve(item);
};
img.src = item.base64;
});
});
data = await Promise.all(data);
console.log(`本次处理耗时:${this.numb}秒`);
clearInterval(this.time);
return data
.filter((i) => Boolean(i.box))
.map((item) => {
item.clipImage = this.getClipImage(item.box, item.img);
return item;
});
}报告!菜坤后端要Blob
[*]把它工资分我一份!!!!!
[*]处理裁剪好的base64base64ToBlob(item.clipImage)new ClipImages("./2025419-450082.mp4").then((data) => {
data.forEach((item) => {
let img = document.createElement("img");
img.src = item.clipImage;
document.body.appendChild(img);
item.clipImageBlob = base64ToBlob(item.clipImage)
});
console.log(data);
});
[*]base64ToBlob代码片段function base64ToBlob(base64, contentType = "image/png") {
// 去掉 Base64 编码字符串的前缀
const sliceIndex = base64.indexOf(",") + 1;
const base64Data = base64.slice(sliceIndex);
// 解码 Base64 数据
const binary = atob(base64Data);
const length = binary.length;
const buffer = new ArrayBuffer(length);
const view = new Uint8Array(buffer);
// 将二进制字符串转换为 Uint8Array
for (let i = 0; i < length; i++) {
view = binary.charCodeAt(i);
}
// 创建 Blob 对象
return new Blob(, { type: contentType });
}
效果图
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页:
[1]